[1011] Scanning Thermal Microscopy on 2D Materials at cryogenic temperatures

نویسنده

  • Charalambos Evangeli
چکیده

Thermal transport in Graphene is of great interest due to its high thermal conductivity, for both fundamental research and future applications such as heat dissipation in electronic devices. Although, the thermal conductivity of graphene can reduce depending on the coupling to the substrate [1]. In this work, we report high-resolution imaging of nanoscale thermal transport in single and few layers of Graphene on Silicon Oxide (SiO2) and hexagonal Boron Nitride (hBN), by Scanning Thermal Microscopy (SThM) in high vacuum. SThM is a leading technique for mapping thermal properties with nanoscale resolution [2], consisting of a self-heated probe which acts as a thermosensor during sample scanning. By using doped Si probes and cooling the sample down to 150K, we mapped the thermal resistance of Graphene layers on SiO2 and hBN with sub-10nm resolution. We observed that thermal transport in these layers changes at the elastically deformed areas, which were formed during deposition in the form of bubbles [3]. More specifically, the thermal conductance at the center of the bubbles increases with their surface area. In addition, we study the effect of the sample temperature and the substrate on the thermal conductance of the graphene layers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Tribological Behavior of Deep Cryogenic Treated Hot Work Tool Steel at Room and High Temperature

The deep cryogenic treatment is a complementary operation that is done on a variety of tool steels aimed at improving their abrasion resistance and hardness. In the case of the H13 hot-work steel, which is widely used at high temperatures as a hot-deformation tool, we need to determine the efficiency of subzero treatment on it at the working temperature. In this regard, this paper is focu...

متن کامل

Thermal Design Considerations and Performance Evaluation of Cryogenic Tube in Tube Heat Exchangers

Heat exchangers are the most important equipment in refrigeration processes. Design and modeling of heat exchangers operating at low temperatures are different from other regular heat exchangers. This study includes two sections. In the first section, design and modeling considerations needed for evaluating the real thermal behavior of heat exchangers at low temperatures were discussed. The...

متن کامل

Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks

Analytical and experimental studies conducted at the NASA Langley Research Center for investigating integrated cryogenic propellant tank systems for a Reusable Launch Vehicle are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, Thermal Protection System (TPS) attachment sub-structure, and TPS. A...

متن کامل

Thermal/mechanical Response and Damage Growth in Polymeric Composites at Cryogenic Temperatures

In order to increase the reliability of the next generation of space transportation systems, the mechanical behavior of polymeric matrix composite (PMC) materials at cryogenic temperatures must be investigated. This paper presents experimental data on the residual mechanical properties of a carbon fiber polymeric composite, IM7/PETI-5 both before and after aging at cryogenic temperatures. Tensi...

متن کامل

Thermal Degradation of Foamed Polymethyl Methacrylate in the Expendable Pattern Casting Process

The thermal degradation of foamed polymethyl methacrylate (PMMA) patterns in the expendable pattern casting process has been studied. Various physical transitions that may occur during the degradation of PMMA have been determined using scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis, and the effects of polymer density on the degradation characteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017